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Abstract

Explainable Al (xAl) can identify samples that are rele-
vant for deep neural networks (DNNs) to detect cardiovas-
cular diseases in ECGs. However, interpretability is lim-
ited as these explanations are not always related to com-
mon diagnostic criteria. xECGArch comprises two con-
volutional neural networks (CNNs) with different temporal
focus. As shown previously, the long-term CNN (LT-CNN)
emphasizes QRS complexes, whose relevance changes cor-
relate with rhythm. To test whether QRS morphology is
decisive, we applied transfer learning to make the LT-CNN
focus on rhythm for atrial fibrillation (AF) detection, using
10 s single-lead ECGs from public databases. The LT-CNN
was trained on 9,675 ECGs to detect R peaks and tested on
1,320 unseen ECGs, reaching a sample-accurate F1 score
of 98.1%. The pre-trained model was then fine-tuned on
AF detection using 8,868 ECGs, with the weights of none
or the first 3 to 8 of 9 layers frozen, reaching F1 scores of
87.6% to 93.3% on 986 unseen ECGs, decreasing with in-
creasing number of frozen layers. A systematic validation
of explanations extracted with deep Taylor decomposition
shows increasing (p < 0.001) model focus on R peaks for
AF detection with more frozen layers, peaking at 7. Our
results indicate that transfer learning can guide DNNs to
use specific features, enhancing interpretability and mov-
ing toward trustworthy Al for clinical applications.

1. Introduction

Atrial fibrillation (AF) is the most common cardiac ar-
rhythmia, with a lifetime risk of 22%-36% [1]. Un-
treated, it increases morbidity, especially stroke, by up to
5 times and mortality by up to 2 times [2]. Early detec-
tion allows interventions that can prevent severe outcomes
[3]. Because AF is often paroxysmal in early stages, de-
tection requires long-term electrocardiographic monitor-
ing [3], which is labor-intensive to analyze. Deep neu-
ral networks (DNN5s) from the field of deep learning (DL)
achieve high performance in AF detection from electro-
cardiograms (ECGs) [4]. However, due to their complex-
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ity, their decision-making process lacks explainability and
their self-learned features lack interpretability [5, 6]. Nev-
ertheless, both is required for their integration into clinical
routine as trustworthy diagnostic support [5,7].

Explainable AI (xAI) methods provide post-hoc expla-
nations that approximate each input value’s relevance for
the DNN decision. This helps to identify relevant ECG
segments [6,7]. However, it is unclear which information
is used by a DNN from these segments and how it relates
to diagnostic criteria, which is why the interpretability of
the explanations is limited [6].

xECGArch [8] is a DL architecture, comprising two
convolutional neural networks (CNNs) with different tem-
poral focus, making it interpretable by design. A system-
atic validation of explanations extracted with deep Tay-
lor decomposition (DTD) demonstrated that the short-term
CNN self-learns morphological features from the ECG
while the long-term CNN (LT-CNN) focuses on QRS com-
plexes [6,8—11], with relevance changes in the QRS com-
plexes correlating with rhythm [6]. However, it is unclear
whether the QRS morphology is a decisive factor to the LT-
CNN. Therefore, in this study, we investigate the potential
of transfer learning (TL) to make the LT-CNN focus par-
ticularly on rhythm for AF detection in single-lead ECGs.

TL commonly involves pre-training a model on a large
dataset and fine-tuning it on a smaller one, with the clas-
sification task being identical (e.g., [12]) or more specific
(e.g., [13]) during fine-tuning. Weimann and Conrad [14]
tested various pre-training tasks, including heart rate cat-
egorization, for fine-tuning on detecting AF, normal sinus
rhythm, or other pathologies, using optimal pre-training
weights as the starting point. In contrast, our approach pre-
trains on sample-precise R peak detection to avoid learning
morphological features, and freezes early-layer weights
during fine-tuning to preserve information. We then exam-
ine how the number of frozen layers affects classification
performance and model explanations.

2. Methods

In this study, the untrained LT-CNN [8] was pre-trained
on R peak detection and fine-tuned on AF detection.
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Table 1. Dataset description for pre-training and fine-
tuning tasks. AF, atrial fibrillation; bpm, beats per minute;
[, female; HR, heart rate; m, male; N, normal sinus rhythm;
O, other pathology; SD, standard deviation.

Sex [% Age HR Label [%
Set  Class  n f/[m ] e SDezn £ 5D AF/N[/O]
Pre-training (R peak detection)
Train - 16,189 457/543 643+174 81.7+252 7.1/31.9/61.0
Test - - 2858 455/544 6442176 8274263 7.1/314/615
Total - 19,047 457/543 643+174 81.8+254 7.1/31.8/61.1
Fine-tuning (AF detection)
AF 4420 423/577 719+11.8
Train non-AF 4,448 459/54.1 60.7+16.7
Total 8868 44.1/559 663%155 49.8/5.1/45.1
AF 507 4227578 71.6+123
Test  non-AF 479 44.1/559 60.6+17.5
Total 986 43.1/569 663x160 51.4/4.17445
AF 4927 423/577 719+119
Total non-AF 4,927 457/543 60.7+16.8
Total 9854 440/560 663x156 50.0/5.0/45.0

2.1. Dataset Description

Originally, XECGArch has been trained and tested on
9,854 ECGs from 4 publicly available databases that have
been used in the George B. Moody PhysioNet Challenge
2021 [15, 16]. In this study we used the same data with
the original training and test splits for the fine-tuning task.
For pre-training, we used 19,047 ECGs from the same
databases, ensuring that no recordings that appeared in the
test set of the fine-tuning task were present in the pre-
training set. From each recording, we used Einthoven II
and the middle 10s. The composition of the data by age,
gender and heart rate (pre-training) is described in Table 1.
The data was pre-processed in line with [8].

R peak annotations were generated automatically using
6 open source QRS detectors [17-22]. Detected R peaks
were accepted for annotation if at least two QRS detectors
found an R peak within a 0.1 s window. The first of the
found peaks within the window was further corrected at the
peak using the PhysioNet [16] waveform database function
correct_peaks to make sure that the annotation is on
top of a local maximum.

2.2. Model Training and Validation

The LT-CNN consists of 9 convolutional blocks, con-
taining 1D convolution, batch normalization and a rectified
linear unit each, global average pooling and a softmax ac-
tivation layer. Here, we added a dropout layer with 25%
drop out rate after the last convolutional layer for extended
robustness. For the pre-training task, the global average
pooling layer has been removed to match input and output
size for one-hot-encoded R peak detection.

For the fine-tuning task the weights from the best model
from the pre-training task were loaded and frozen in none

or the first 3 to 8 layers in separate experiments, while
training the remaining layers.

For each experiment, we conducted a grid search on the
training set in a 5-fold cross validation, using the Adam
optimizer to minimize the categorical cross-entropy loss.
Due to the imbalance between data points with and with-
out R peak, a 0.7 to 0.3 weighting was applied during pre-
training. During grid search, we optimized the learning
rate [le-3, le-4, le-5] and the batch size (pre-training: [2,
3, 4], fine-tuning: [8, 16, 32]). The maximum training du-
ration was set to 150 epochs with early stopping after 20
epochs on plateau. The best model according to F1 score
was applied to an unseen test set, containing 15% of the
data during pre-training or 10% during fine-tuning.

2.3. Evaluation of Model Explanations

We extracted model explanations using DTD as it pro-
vided the most trustworthy explanations for XECGArch in
a systematic comparison of 13 xAI methods using pertur-
bation [8]. We then determined relative relevance (rR) val-
ues by recording-wise scaling relevance values to [0, 1].

Subsequently, mean rR per interval and recording was
calculated in line with [6], using iterative two-dimensional
signal warping (i2DSW) [23, 24] for robust fiducial point
detection. The intervals included the interval from Q peak
to R peak (Q), the R peak + 1 sample (R), the interval from
R peak to S peak (S), and everything beside the QRS com-
plex (notQRS). The mean rR per segment and recording
was normalized on average rR per recording (rRyorm)-

Using a 2-factor analysis of variance (ANOVA) fol-
lowed by Tukey-Kramer post-hoc test, we investigated the
effect of intervals and the number of frozen layers as inde-
pendent factors on the mean tR as the dependent factor.

3. Results

After pre-training, the LT-CNN reached an F1 score of
98.1% in point-precise R peak detection on the unseen test
set, containing a total of 39,379 annotated R peaks, which
equals 13.8 4+ 4.4 (mean + standard deviation (SD)) R
peaks per recording and an average heart rate of 82.7 +
26.3 beats per minute (bpm), compared to 39,508 predicted
R peaks, which equals 13.8 £ 4.5 R peaks per recording
and an average heart rate of 82.9 + 26.7 bpm. Additional
model performance metrics are summarized in Table 2.

The fine-tuned LT-CNN reached an overall decreased F1
score in AF detection of 87.6% to 93.3% for 8 to 0 frozen
layers compared to 95.1%, reached by the original LT-
CNN [8]. Noticeably, the model performance keeps steady
for 0 to 3 frozen layers and decreases steadily with increas-
ing number of frozen layers, with a particularly steep drop
in the F1 score of 3.3% between 7 and 8 frozen layers,
compared to 0.1% to 1.3% for previous steps (see Table 2).
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Figure 1. Model explanations in terms of sample-wise relative relevance (rR) during pre-training and fine-tuning with

different numbers of frozen layers (n ;) on atrial fibrillation (AF) detection; A as saliency maps for example ECGs and B
systematically investigated for rR averaged per interval type and normalized on average rR per ECG recording (rRyorm)s
with significance values according to Tukey-Kramer post-hoc test for inter-interval differences for each n ;-configuration.

Table 2. Model performance during 5-fold cross valida-
tion (for training and validation set) for optimal learning
rate (Ir) and batch size (bs) and during test on unseen test
set with different numbers of frozen layers (ny;). All per-
formance metrics are given in %. SD, standard deviation.

Pre- Orig.

Metric train 8] Fine-tune
ny - - 0 3 4 5 6 7 8
Ir le-3  led T1e-3 fe3 1e-3 T1e-3 1e3 1e3 1e3
bs 3 8 16 32 16 16 8 16 32
Training (5-fold cross validation)
F1
mean 98.1 958 957 942 940 934 922 884
SD 0.3 1.7 08 06 1.1 1.5 1.0 038
max 98.5 97.1 964 946 948 934 923 875
Validation (5-fold cross validation)
F1
mean 97.8 928 926 916 914 903 896 872
SD 0.2 04 04 06 08 12 09 08
max 98.1 932 931 923 919 917 90.6 883
Test

Accuracy 1000 953 932 932 919 915 904 90.1 864
Sensitivity 982 949 913 921 91.7 903 909 93.1 937
Precision 979 956 953 945 925 929 904 882 823
Specificity 100.0 956 952 944 921 927 898 86.8 787
F1 98.1 95.1 933 933 921 91.6 90.7 90.6 87.6

Exemplary model explanations in Figure 1 A show a
clear focus on QRS complexes during R peak detection.
During fine-tuning, an increasing focus on the R peak and
a decreasing 1R of surrounding areas, especially the P and
T waves, is observed with increasing number of frozen lay-
ers. However, from 7 to 8 frozen layers, the focus of the R
peak decreases again and the rR of the T wave increases.

Figure 1 B shows the systematic investigation on rR per
interval and number of frozen layers. ANOVA revealed
both of them and their interaction to be significant factors
(p < 0.001) on rR. The post-hoc analysis was performed
only for significant main factors. Results of the post-hoc
analysis are shown in Figure 1B for rR differences be-
tween intervals within the same model configuration and in
Table 3 for rR differences between R intervals of different
model configurations. For each number of frozen layers,
the R peak was significantly (p < 0.001) the most relevant
interval. It was observed that with an increasing number of
frozen layers, the 1R of the R peak increased significantly
(p < 0.001) in relation to the mean 1R of the entire signal
until it dropped significantly (p < 0.001) in median from 7
to 8 frozen layers, with the interquartile range increasing.

4. Discussion & Conclusion

The LT-CNN achieved a sample-accurate F1 score of
98.1% on the unseen test set for R peak detection, clearly
focusing the QRS complexes with the R peaks being most
relevant. The number of frozen layers affected the models
ability to detect AF in the XECGArch test dataset, with an
F1 score improving from 87.6% to 93.3% for 8 to 0 layers
frozen. Furthermore, with an increasing number of frozen
layers of up to 7, there is a focus shift from the surround-
ing area to the R peaks, before it drops for 8 frozen layers.
This indicates that the DNN requires sufficient free layers,
which weights can be adjusted during fine-tuning, to solve
the transfer task. An exact threshold for the number of lay-
ers to be frozen cannot be derived from this study.
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Table 3. Results of the Tukey-Kramer post-hoc test on
differences in R intervals of different model configurations
regarding their relative relevance, including significance
values (*: p < 0.001) and Cohen’s d for effect sizes (f
0.2 <|d| < 0.5, 11 0.5 < |d] < 0.8, +11: 0.8 < |d)).

Model configurations - number of frozen layers (nf;)

np=0 3 7 5 6 7 3
Orig [8]  *ff *f1f *fff *frf *fif *frf *fif
nj=0 RREORRTE R ORERE R %
3 SRR S LR A S s B
4 * * * i .
5 - # *
6 # *
7 * it

Overall, our findings suggest that TL can guide a DNN
to use specific characteristics for solving a task on costs of
a small reduction in accuracy. This might in future appli-
cations enhance the models’ interpretability, a prerequisite
for trustworthiness and the use of Al in clinical practice.
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